
SIAM Conference on Optimization, May 2008

On Automatic Differentiation
for Optimization

David M. Gay

Optimization and Uncertainty Estimation

http://www.sandia.gov/∼dmgay

dmgay@sandia.gov

+1-505-284-1456

Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Released as SAND2008-3059C.

1



Outline

• Why AD?

•• Forward and Backward

• Implementation approaches

• Sacado package in Trilinos

• Hessian-vector products

• Concluding remarks

2



Why AD?

Some algorithms need gradients and perhaps

Hessians. Possibilities...

• Finite-differences

+ work with black boxes

− but can be expensive

− and introduce truncation error.

3



Why AD? (cont’d)

• Analytic derivatives

+ no truncation error

+ available from symbolic-computation

packages

− tedious and error-prone if done by hand

− can be inefficient

− possible interfacing issues

4



Why AD? (cont’d)

• Automatic Differentiation (AD)

+ no truncation error (uses chain rule)

+ reverse mode = efficient for gradients

+ sometimes easy to use

− can take lots of memory

− possible interfacing issues

− if-then-else: which side at break?

5



Forward and Backward

Two modes:

• Forward: recur partials (w.r.t. independent

variables) of operands at each operation

+ good locality and memory use

+ for n = 1 can compute high-order deriv’s

(Taylor series)

− slow for large n (# indep. vars)

6



Forward and Backward (cont’d)

• Backward: recur partials of final result

w.r.t. intermediate results

+ f and ∇f in time proportional to

computing f

− memory use proportional to number of

operations

7



Forward and Backward (cont’d)

• Backward: recur partials of final result

w.r.t. intermediate results

+ f and ∇f in time proportional to

computing f

− memory use proportional to number of

operations

8



Implementation Approaches

Implementations must augment function

computations with recurrence of partial

derivatives. Logically equivalent to obtaining

and manipulating an expression graph.

• Preprocessor consumes source code (e.g., C

or Fortran) and emits modified source.

◦ Examples: AUGMENT, ADIFOR,

ADIC

9



Implementation Approaches (cont’d)

• Operator overloading in some programming

languages, such as C++ or Fortran

◦ Examples: ADOL-C, ADOL-F, Sacado

• Modeling language (manipulates expression

graph behind the scenes)

◦ Examples: AMPL, GAMS

Many tools exist; http://www.autodiff.org

lists 29.

10



Implementation: Reverse-mode Inner Loops

Reverse-mode derivative propagation: all

multiplications and additions. Op’ns of form

a← a + b× c

AMPL/solver interface lib.:

do *d->a.rp += *d->b.rp * *d->c.rp;

while(d = d->next);

Sacado:

do d->c->aval += *d->a * d->b->aval;

while((d = d->next));

11



Sacado

Trilinos = collection of open-source tools for

scientific computing in C++; see

http://trilinos.sandia.gov

Sacado = Trilinos AD package (templated)

• Forward AD = rewrite of FAD package of

Di Césaré and Pironneau; uses expression

templates.

• Reverse AD = RAD (written by dmg).

• Taylor poly’s (n = 1 fwd) by Eric Phipps.
12



Sacado results in Charon

0 100 200 300 400
0

100

200

300

400

500

DOF Per Element

R
el

at
iv

e 
E

va
l. 

T
im

e
Jacobian Eval. (a)

1.02

0.27

0 100 200 300 400
7

7.5

8

8.5

9

9.5

DOF Per Element

R
el

at
iv

e 
E

va
l. 

T
im

e

Adjoint Eval. (c)

0 100 200 300 400
0

200

400

600

800

DOF Per Element

R
el

at
iv

e 
F

lo
p

 C
o

u
n

t

Jacobian Eval. (b)

0.94

1.55

0 100 200 300 400
5.6

5.65

5.7

5.75

5.8

5.85

DOF Per Element

R
el

at
iv

e 
F

lo
p

 C
o

u
n

t

Adjoint Eval. (d)

FD
FAD

FD
FAD

RAD

RAD

13



nlc for Optimized Gradients

Seeing larger expression graphs gives more

opportunity for optimizing the computation.

• ADIC optimizes per C statement, mixing

forward and reverse, in overall forward

evaluation.

• nlc program sees entire function evaluation

in .nl file, emits C or Fortran avoiding

needless ops.

14



Timings on Protein-Folding Example

Eval style sec/eval rel.

Compiled C, no grad. 2.92e–5 1.0

Sacado RAD 1.90e–4 6.5

nlc 4.78e–5 1.6

ASL, fg mode 9.94e–5 3.4

ASL, pfgh mode 1.26e–4 4.3

Eval. times, protein folding (n = 66)

15



Hessian-vector Products

Several approaches...

• RAD ◦ FAD: ADvar<SFad<double,1> >

• FAD ◦ RAD: SFad<ADvar<double>,1>

• Custom mixture: Rad2::ADvar<double>

• AMPL/solver interface library: find,

exploit partial separability automatically:

f(x) =
∑

i θi

(

∑

j fij(Uijx)
)

.

16



Hessian-vector timings

Eval style sec/eval rel.

RAD ◦ FAD 4.70e–4 18.6

FAD ◦ RAD 1.07e–3 42.3

RAD2 (Custom mixture) 2.27e–4 9.0

ASL, pfgh mode 2.53e–5 1.0

Seconds per Hessian-vector prod

f = 1

2
xTQx, n = 100.

17



Concluding Remarks

• ∃ many possibilities, each with advantages

and disadvantages. Having several tools

helps, especially for treating hot spots.

• C++ — like looking through a keyhole;

Seeing more expression graph can help.

• AD can save human time.

• AD may give faster, more accurate

computation.

• Room for more tools to optimize evals.
18



Some Pointers

http://www.autodiff.org

http://trilinos.sandia.gov

http://www.sandia.gov/∼dmgay

19


